Application Diagrams: On-Demand Water Heaters

Basic piping guide diagrams for single-unit and multiple-unit applications: domestic recirculation, storage tank, & space-heating systems.

When installing our on-demand water heating products, please follow all instructions as specified in the product installation manual. In addition, follow all applicable State and local codes, or in the absence of such codes, the most recent edition of the National Fuel Gas Code: ANSI Z223.1/NFPA 54 in the U.S.A. or CAN/CSA B149.1 Natural Gas, Propane Installation Code in Canada.
Table of Contents

Application Diagrams

Domestic Hot Water - Standard Application
- Single Unit ... 1
- 2-Unit Easy-Link .. 2
- 3-Unit Easy-Link .. 3
- 4-Unit Easy-Link .. 4

Hot Water Recirculation System
- Single Unit ... 5
- 2-Unit Easy-Link .. 6
- 3-Unit Easy-Link .. 7
- 4-Unit Easy-Link .. 8

Space Heating Application with Indirect Heat Exchanger
- Single Unit ... 9
- 2-Unit Easy-Link .. 10
- 3-Unit Easy-Link .. 11
- 4-Unit Easy-Link .. 12

Storage Tank (3 tapping) Application
- Single Unit ... 13
- 2-Unit Easy-Link .. 14
- 3-Unit Easy-Link .. 15
- 4-Unit Easy-Link .. 16

Storage Tank (4 tapping) Application
- Single Unit ... 17
- 2-Unit Easy-Link .. 18
- 3-Unit Easy-Link .. 19
- 4-Unit Easy-Link .. 20
This drawing is a concept diagram and is intended to be used ONLY as a basic guide. Applications must be designed by a professional application engineer or designer. Local and State Codes also dictate correct installation. There are many factors that change from application to application and every individual application will differ in some way. Each application component must be sized correctly by a professional.
Easy-Link (4)
Basic Domestic

This drawing is a concept diagram and is intended to be used ONLY as a basic guide. Applications must be designed by a professional application engineer or designer. Local and State Codes also dictate correct installation. There are many factors that change from application to application and every individual application will differ in some way. Each application component must be sized correctly by a professional.
This drawing is a concept diagram and is intended to be used ONLY as a basic guide. Applications must be designed by a professional application engineer or designer. Local and State Codes also dictate correct installation. There are many factors that change from application to application and every individual application will differ in some way. Each application component must be sized correctly by a professional.

* The air vent is to be installed at the highest location of the system. The diameter of the pipe leading up the air vent is to be no smaller than the piping throughout the system.

** 1. The recirculation pump is to be controlled by:
 - Dual-set aquastat (recommended w/ timer)
 - OR
 - Unit Pump Control set to "Recirculation Mode" (if the unit model or controller has this function)

2. The recirculation pump is to provide no less than 2 gpm and no more than 4 gpm through each activated unit in the system. (Exception: between 4 gpm and 8 gpm through each T-M50/910 model)

Hot Water Recirculation System

<table>
<thead>
<tr>
<th>Pump</th>
<th>Shut Off/Isolation Valve</th>
<th>Union</th>
<th>Air Separator</th>
<th>Expansion Tank</th>
<th>Check Valve</th>
<th>Pressure Relief Valve</th>
<th>Air Vent</th>
</tr>
</thead>
</table>

Page 5 of 20
This drawing is a concept diagram and is intended to be used ONLY as a basic guide. Applications must be designed by a professional application engineer or designer. Local and State Codes also dictate correct installation. There are many factors that change from application to application and every individual application will differ in some way. Each application component must be sized correctly by a professional.

* The air vent is to be installed at the highest location of the system. The diameter of the pipe leading up the air vent is to be no smaller than the piping throughout the system.

** 1. The recirculation pump is to be controlled by:
 - Dual-set aquastat (recommended w/timer)
 - Unit Pump Control set to "Recirculation Mode" (if the unit model or controller has this function)

2. The recirculation pump is to provide no less than 2 gpm and no more than 4 gpm through each activated unit in the system. (Exception: between 4 gpm and 8 gpm through each T-M50/910 model)
This drawing is a concept diagram and is intended to be used ONLY as a basic guide. Applications must be designed by a professional application engineer or designer. Local and State Codes also dictate correct installation. There are many factors that change from application to application and every individual application will differ in some way. Each application component must be sized correctly by a professional.

* The air vent is to be installed at the highest location of the system. The diameter of the pipe leading up the air vent is to be no smaller than the piping throughout the system.

** 1. The recirculation pump is to be controlled by:
 - Dual-set aquastat (recommended w/ timer)
 - OR
 - Unit Pump Control set to "Recirculation Mode" (if the unit model or controller has this function)

2. The recirculation pump is to provide no less than 2 gpm and no more than 4 gpm through each activated unit in the system. (Exception: between 4 gpm and 8 gpm through each T-M50/910 model)
This drawing is a concept diagram and is intended to be used ONLY as a basic guide. Applications must be designed by a professional application engineer or designer. Local and State Codes also dictate correct installation. There are many factors that change from application to application and every individual application will differ in some way. Each application component must be sized correctly by a professional.

* The air vent is to be installed at the highest location of the system. The diameter of the pipe leading up the air vent is to be no smaller than the piping throughout the system.

** 1. The recirculation pump is to be controlled by:
 - Dual-set aquastat (recommended w/ timer)
 OR
 - Unit Pump Control set to "Recirculation Mode" (if the unit model or controller has this function)

2. The recirculation pump is to provide no less than 2 gpm and no more than 4 gpm through each activated unit in the system. (Exception: between 4 gpm and 8 gpm through each T-M50/910 model)
This drawing is a concept diagram and is intended to be used ONLY as a basic guide. Applications must be designed by a professional application engineer or designer. Local and State Codes also dictate correct installation. There are many factors that change from application to application and every individual application will differ in some way. Each application component must be sized correctly by a professional.

1. The recirculation pump is to be controlled by:
- Dual-set aquastat (recommended w/ timer)
- OR
- Unit Pump Control set to "Recirculation Mode" (if the Unit model or controller has this function)
- OR
- Thermostat controlling the heating application.

2. The recirculation pump is to provide no less than 2 gpm through each activated unit in the system. (Exception: no less than 4 gpm through each T-M50/910 model)

Depending on the application, the system may require a priority switch or priority control.
This drawing is a concept diagram and is intended to be used ONLY as a basic guide. Applications must be designed by a professional application engineer or designer. Local and State Codes also dictate correct installation. There are many factors that change from application to application and every individual application will differ in some way. Each application component must be sized correctly by a professional.

The air vent is to be installed at the highest location of the system. The diameter of the pipe leading up the air vent is to be no smaller than the piping throughout the system.

*** The pump size and control are dependant on the requirements of the heating application.

** 1. The recirculation pump is to be controlled by:
 - Dual-set aquastat (recommended w/ timer)
 - OR
 - Unit Pump Control set to "Recirculation Mode" (if the Unit model or controller has this function)
 - OR
 - Thermostat controlling the heating application.

2. The recirculation pump is to provide no less than 2 gpm through each activated unit in the system. (Exception: no less than 4 gpm through each T-M50/910 model)

Depending on the application, the system may require a priority switch or priority control.
This drawing is a concept diagram and is intended to be used ONLY as a basic guide. Applications must be designed by a professional application engineer or designer. Local and State Codes also dictate correct installation. There are many factors that change from application to application and every individual application will differ in some way. Each application component must be sized correctly by a professional.

* The air vent is to be installed at the highest location of the system. The diameter of the pipe leading up the air vent is to be no smaller than the piping throughout the system.

** 1. The recirculation pump is to be controlled by:
 - Dual-set aquastat (recommended w/ timer)
 - Unit Pump Control set to "Recirculation Mode" (if the Unit model or controller has this function)
 - Thermostat controlling the heating application.

 2. The recirculation pump is to provide no less than 2 gpm through each activated unit in the system. (Exception: no less than 4 gpm through each T-M50/910 model)

Depending on the application, the system may require a priority switch or priority control.
This drawing is a concept diagram and is intended to be used ONLY as a basic guide. Applications must be designed by a professional application engineer or designer. Local and State Codes also dictate correct installation. There are many factors that change from application to application and every individual application will differ in some way. Each application component must be sized correctly by a professional.

* The air vent is to be installed at the highest location of the system. The diameter of the pipe leading up the air vent is to be no smaller than the piping throughout the system.

*** The pump size and control are dependent on the requirements of the heating application.

** 1. The recirculation pump is to be controlled by:
 - Dual-set aquastat (recommended w/timer)
 - Unit Pump Control set to "Recirculation Mode" (if the Unit model or controller has this function)
 OR
 - Thermostat controlling the heating application.

2. The recirculation pump is to provide no less than 2 gpm through each activated unit in the system. (Exception: no less than 4 gpm through each T-M50/910 model)

Depending on the application, the system may require a priority switch or priority control.
This drawing is a concept diagram and is intended to be used ONLY as a basic guide. Applications must be designed by a professional application engineer or designer. Local and State Codes also dictate correct installation. There are many factors that change from application to application and every individual application will differ in some way. Each application component must be sized correctly by a professional.

* The air vent is to be installed at the highest location of the system. The diameter of the pipe leading up the air vent is to be no smaller than the piping throughout the system.

** 1. The tank circulation pump is to be controlled by:
 - Dual-set aquastat (recommended w/ timer)
 - OR
 - Unit Pump Control set to "Storage Tank Mode" (if the unit model or controller has this function)

2. The tank circulation pump is to provide no less than 2 gpm through each activated unit in the system. (Exception: no less than 4 gpm through each T-M50/910 model)

<table>
<thead>
<tr>
<th>Storage Tank Application (3 tappings)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pump</td>
</tr>
<tr>
<td>Expansion Tank</td>
</tr>
</tbody>
</table>
* The air vent is to be installed at the highest location of the system. The diameter of the pipe leading up the air vent is to be no smaller than the piping throughout the system.

** 1. The tank circulation pump is to be controlled by:
 - Dual-set aquastat (recommended w/ timer)
 - OR
 - Unit Pump Control set to "Storage Tank Mode" (if the unit model or controller has this function)

2. The tank circulation pump is to provide no less than 2 gpm through each activated unit in the system. (Exception: no less than 4 gpm through each T-M50/910 model)
The air vent is to be installed at the highest location of the system. The diameter of the pipe leading up the air vent is to be no smaller than the piping throughout the system.

1. The tank circulation pump is to be controlled by:
 - Dual-set aquastat (recommended w/ timer)
 - OR
 - Unit Pump Control set to "Storage Tank Mode" (if the unit model or controller has this function)

2. The tank circulation pump is to provide no less than 2 gpm through each activated unit in the system. (Exception: no less than 4 gpm through each T-M50/910 model)
The air vent is to be installed at the highest location of the system. The diameter of the pipe leading up the air vent is to be no smaller than the piping throughout the system.

** 1. The tank circulation pump is to be controlled by:
 - Dual-set aquastat (recommended w/ timer)
 - OR
 - Unit Pump Control set to "Storage Tank Mode" (if the unit model or controller has this function)

2. The tank circulation pump is to provide no less than 2 gpm through each activated unit in the system. (Exception: no less than 4 gpm through each T-M50/910 model)
This drawing is a concept diagram and is intended to be used ONLY as a basic guide. Applications must be designed by a professional application engineer or designer. Local and State Codes also dictate correct installation. There are many factors that change from application to application and every individual application will differ in some way. Each application component must be sized correctly by a professional.

![Diagram of Storage Tank Application]

- The air vent is to be installed at the highest location of the system. The diameter of the pipe leading up the air vent is to be no smaller than the piping throughout the system.

1. The tank circulation pump is to be controlled by:
- Dual-set aquastat (recommended w/ timer)
- OR
- Unit Pump Control set to "Storage Tank Mode" (if the unit model or controller has this function)

2. The tank circulation pump is to provide no less than 2 gpm through each activated unit in the system. (Exception: no less than 4 gpm through each T-M50/910 model)

Storage Tank Application (4 tappings)

<table>
<thead>
<tr>
<th>Pump</th>
<th>Shut Off/Isolation Valve</th>
<th>Union</th>
<th>Air Separator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Expansion Tank</td>
<td>Check Valve</td>
<td>Pressure Relief Valve</td>
<td>Air Vent</td>
</tr>
</tbody>
</table>
This drawing is a concept diagram and is intended to be used ONLY as a basic guide. Applications must be designed by a professional application engineer or designer. Local and State Codes also dictate correct installation. There are many factors that change from application to application and every individual application will differ in some way. Each application component must be sized correctly by a professional.

* The air vent is to be installed at the highest location of the system. The diameter of the pipe leading up the air vent is to be no smaller than the piping throughout the system.

** 1. The tank circulation pump is to be controlled by:
 • Dual-set aquastat (recommended w/timer)
 OR
 • Unit Pump Control set to "Storage Tank Mode" (if the unit model or controller has this function)

 2. The tank circulation pump is to provide no less than 2 gpm through each activated unit in the system. (Exception: no less than 4 gpm through each T-M50/910 model)

** Easy-Link (2) Storage Tank Application (4 tappings) **

<table>
<thead>
<tr>
<th>Component</th>
<th>Symbol</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pump</td>
<td></td>
</tr>
<tr>
<td>Shut Off/Isolation Valve</td>
<td></td>
</tr>
<tr>
<td>Union</td>
<td></td>
</tr>
<tr>
<td>Air Separator</td>
<td></td>
</tr>
<tr>
<td>Expansion Tank</td>
<td></td>
</tr>
<tr>
<td>Check Valve</td>
<td></td>
</tr>
<tr>
<td>Pressure Relief Valve</td>
<td></td>
</tr>
<tr>
<td>Air Vent</td>
<td></td>
</tr>
</tbody>
</table>
This drawing is a concept diagram and is intended to be used ONLY as a basic guide. Applications must be designed by a professional application engineer or designer. Local and State Codes also dictate correct installation. There are many factors that change from application to application and every individual application will differ in some way. Each application component must be sized correctly by a professional.

* The air vent is to be installed at the highest location of the system. The diameter of the pipe leading up the air vent is to be no smaller than the piping throughout the system.

** 1. The tank circulation pump is to be controlled by:
 - Dual-set aquastat (recommended w/ timer)
 - OR
 - Unit Pump Control set to “Storage Tank Mode” (if the unit model or controller has this function)

2. The tank circulation pump is to provide no less than 2 gpm through each activated unit in the system.
 (Exception: no less than 4 gpm through each T-M50/910 model)

Easy-Link (3)
Storage Tank Application (4 tappings)
This drawing is a concept diagram and is intended to be used ONLY as a basic guide. Applications must be designed by a professional application engineer or designer. Local and State Codes also dictate correct installation. There are many factors that change from application to application and every individual application will differ in some way. Each application component must be sized correctly by a professional.

- The air vent is to be installed at the highest location of the system. The diameter of the pipe leading up the air vent is to be no smaller than the piping throughout the system.

** 1. The tank circulation pump is to be controlled by:
 - Dual-set aquastat (recommended w/ timer)
 OR
 - Unit Pump Control set to "Storage Tank Mode" (if the unit model or controller has this function)

2. The tank circulation pump is to provide no less than 2 gpm through each activated unit in the system. (Exception: no less than 4 gpm through each T-M50/910 model)

Easy-Link (4)
Storage Tank Application (4 tappings)

<table>
<thead>
<tr>
<th>Pump</th>
<th>Shut Off/Isolation Valve</th>
<th>Union</th>
<th>Air Separator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Expansion Tank</td>
<td>Check Valve</td>
<td>Pressure Relief Valve</td>
<td>Air Vent</td>
</tr>
</tbody>
</table>