Dear Customer,

This Genesis Water Heater Design Guide is intended to explain, simplify and help in the planning and the installation of our Genesis Water Heaters on your next project. However, it is important to remember that this guide is supplemental to the Installation and Operation Manual and does not contain all of the information and instructions necessary to install and operate the unit. The Installation & Operation Manual must be read in its entirety and all instructions, notices, cautions and warnings followed.

Best Regards,

A.O. Smith Product Management
Table of Contents

- Codes ... 4
- Location of Unit ... 4
- TABLE A. Combustible Floor Kits ... 5
 - FIG. 1 Models CF 991-2071 ... 5
 - FIG. 2 Models CF 401-751 ... 5
 - Outdoor Use ... 6
- TABLE B. Clearances From Combustibles .. 6
 - FIG. 3 Water Heater Equipment & Control Orientation 6
 - Control Orientation ... 6
 - Combustion & Ventilation Air ... 7
 - FIG. 4-7 Combustion & Ventilation Air ... 7
- Determining Total "Free Area" ... 7
- Contaminants ... 8
- General Venting ... 8
- Venting Options .. 10
- TABLE C. Flue Sizes & Inlet Air Pipe Sizes .. 10
 - FIG. 8 Barometric Damper Installation .. 10
 - FIG. 9 Multiple Unit Barometric Damper Installation 11
 - FIG. 10 Powered Sidewall Venting (Powered Vent Cap Shown) 11
 - TABLE D. Powered Sidewall Vent Kits ... 12
 - FIG. 11 Powered DirectAire Horizontal (Powered Vent Cap Shown) 12
 - TABLE E. Power DirectAire® Horizontal Vent Kits 13
 - FIG. 12 Vertical Vent & Air Inlet ... 14
 - FIG. 13 Vertical Vent & Sidewall Air Inlet .. 14
 - TABLE F. DirectAire Vertical Air Inlet Kits ... 15
 - FIG. 14 Aire-Lock Direct vent ... 15
 - TABLE G. Direct Vent Kits ... 16
 - FIG. 15 Sidewall Vent ... 16
 - Outdoor Installation .. 17
 - TABLE H. Sidewall Vent Kits ... 17
 - FIG. 16 Outdoor Venting ... 17
 - Gas Supply ... 18
 - TABLE I. Outdoor Kits .. 18
 - TABLE J. Gas Supply Pipe Sizing ... 18
 - Low Water Temperature Delivery ... 19
 - TABLE K. Inlet Gas Pressure .. 19
 - Water Connections .. 19
 - Pump Operation ... 20
 - Water Treatment ... 20
 - Water Velocity Control ... 20
 - TABLE L. Required Temperature Rise ... 20
 - TABLE M. Required Pump Performance ... 20
 - Electrical Requirements ... 21
 - Relief Valve .. 21
 - TABLE N. Common Water Manifold Sizes ... 21
 - TABLE O. Amp Draw .. 21
- Appendix A - Water Piping Diagrams .. 22
In designing/installing a water heater system, pay special attention to:

- **Water Velocity**
 (See page 19 for Required Temperature Rise chart.)

- **Factory Supplied Pump Capacity**
 (See page 19 for Pump Operation.)

- **Manifold Pipe Size**
 When using more than one heater
 (See page 20 for Common Water Manifold Size for Multiple Water Heater Installation Table.)

- **Storage Tank Circulating Tappings**
 (See page 20 for Manifold Pipe Size.)

- **Placement of Cold Water Inlet and Building Return**
 (See Pages Appendix A for Water Heater Piping Diagrams.)

- **Water Hardness**
 (See page 19 for Water Treatment Information.)

CODES

The equipment shall be installed in accordance with those installation regulations in effect in the local area where the installation is to be made. These shall be carefully followed in all cases. Authorities having jurisdiction shall be consulted before installations are made.

In the absence of such requirements, the installation shall conform to the latest edition of the National Fuel Gas Code, ANSI Z223.1. Where required by the authority having jurisdiction, the installation **must** conform to American Society of Mechanical Engineers Safety Code for Controls and Safety Devices for Automatically Fired Boilers, ASME CSD-1. Where required by the authority having jurisdiction, the installation **must** comply with the Canadian Association Code, CAN/CGA-B149.1 and/or B149.2 and/or local codes.

LOCATION OF UNIT

1. Locate the unit so that if water connections should leak, water damage will not occur. When such locations cannot be avoided, it is recommended that a suitable drain pan, adequately drained, be installed under the unit. The pan **must not** restrict combustion air flow.

2. The indoor units **must** be installed so that the ignition system components are protected from water (dripping, spraying, rain, etc.) during appliance operation and service (circulator replacement, control replacement, etc.).

3. The appliance **must** be installed on a level, non-combustible floor. Concrete over wood is not considered a non-combustible floor. Maintain required clearances from combustible surfaces.

Under no circumstances is the manufacturer to be held responsible for water damage in connection with this unit or any of its components.
LOCATION OF UNIT (cont’d)

4 For installation on a combustible floor only when installed on special base: Units installed over a combustible floor must use the Special Combustible Floor Base. The unit must be centered on the base as shown in FIG. 1.

- Provide a base of hollow clay tile or concrete blocks from 8” to 12” thick and extending 24” beyond the sides.

- The blocks must be placed in line so that the holes line up horizontally to provide a clear passage through the blocks.

- This procedure should also be followed if electrical conduit or radiant heat distribution piping runs through the floor and beneath the appliance.

- Ensure that combustible floor base meets local fire code requirements.

- The correct kit number for the required base is noted on the rating plate of each unit and listed in Table A.

5 Outdoor models require the installation of an optional vent cap. Instructions for placement of the vent cap are included in the venting section.

Outdoor models must not be installed directly on the ground. The outdoor unit must be installed on a concrete brick, block or other non-combustible pad. Outdoor models have additional special location and clearance requirements. (See Outdoor Venting Pg. 16)
SPECIAL LOCATION: OUTDOOR USE

Outdoor models have additional location and clearance requirements. These requirements must be adhered to carefully, since wind, rain, snow and cold cannot be controlled in outdoor applications. See Outdoor Installation, in the venting section on page 16.

<table>
<thead>
<tr>
<th>CLEARANCES</th>
<th>GWH0400 thru GWH0750</th>
<th>GWH1000 thru GWH2100</th>
</tr>
</thead>
<tbody>
<tr>
<td>Right Side</td>
<td>1"</td>
<td>3"</td>
</tr>
<tr>
<td>Rear</td>
<td>1"</td>
<td>3"</td>
</tr>
<tr>
<td>Left Side</td>
<td>6"</td>
<td>3"</td>
</tr>
<tr>
<td></td>
<td>(24" for Service)</td>
<td>(24" for Service)</td>
</tr>
<tr>
<td>Front</td>
<td>ALCOVE*</td>
<td>ALCOVE*</td>
</tr>
<tr>
<td></td>
<td>(24" for Service)</td>
<td>(30" for Service)</td>
</tr>
<tr>
<td>Top</td>
<td>1"</td>
<td>3"</td>
</tr>
<tr>
<td>Flue</td>
<td>1"**</td>
<td>1"**</td>
</tr>
<tr>
<td>Hot Water Pipes</td>
<td>1"</td>
<td>1"</td>
</tr>
</tbody>
</table>

* ALCove is a closet without a door.
** Consult local codes and/or vent manufacturer.

(TABLE B)
CLEARANCES FROM COMBUSTIBLES

(FIG. 3)
WATER HEATER EQUIPMENT AND CONTROL ORIENTATION
COMBUSTION & VENTILATION AIR

Provisions for combustion and ventilation air must be in accordance with Section 5.3, Air for Combustion and Ventilation, of the latest edition of the National Fuel Gas Code, ANSI Z223.1; in Canada, the latest edition of CGA Standard B149 Installation Code for Gas Burning Appliances and Equipment; or applicable provisions of the local building codes.

The equipment room must be provided with properly sized openings to assure adequate combustion air and proper ventilation when the unit is installed with conventional venting or sidewall venting.

CAUTION: Under no circumstances should the equipment room be under a negative pressure when atmospheric combustion equipment is installed in the room.

If combustion and ventilation air is taken from the outdoors using a duct to deliver the air to the mechanical room, each of the two openings should be sized based on a minimum free area of one square inch per 2000 Btu input (11 cm² per kW).

EXAMPLE OF SIZING FOR COMBUSTION & VENTILATION AIR OPENINGS (WATER HEATER WITH 2,070,000 Btu/hr INPUT):

When combustion and ventilated air is taken from directly outside the building (FIG. 4), divide the total BTU's by 4,000. This yields 517.5 sq.in. of “Free Area” without restriction.

\[
(2,070,000 \div 4000 = 517.5 \text{ sq.in.})
\]

Since the air opening is 50% closed due to screens and louvers, the total opening must be multiplied by 2.

\[
(517.5 \text{ sq. in.} \times 2 = 1,035 \text{ sq.in.})
\]

This project requires one Ventilation Air Opening with net “Area” of 1,035 square inches with louver dimensions of 30” x 35” and one Combustion Air Opening with net “Area” of 1,035 square inches with louver dimensions of 30” x 35”.

1. If air is taken directly from outside the building with no duct, provide two permanent openings:

 A. Combustion air opening with a minimum free area of one square inch per 4000 Btu input (5.5 cm² per kW). This opening must be located within 12” (30 cm) of the bottom of the enclosure.

 B. Ventilation air opening with a minimum free area of one square inch per 4000 Btu input (5.5 cm² per kW). This opening must be located within 12” (30 cm) of the top of the enclosure.

2. If combustion and ventilation air is taken from the outdoors using a duct to deliver the air to the mechanical room, each of the two openings should be sized based on a minimum free area of one square inch per 2000 Btu input (11 cm² per kW).
COMBUSTION & VENTILATION AIR (cont’d)

(FIG. 6)
COMBUSTION AIR FROM AN INTERIOR SPACE

If air is taken from another interior space, each of the two openings specified above should have a net free area of one square inch for each 1000 Btu (22 cm² per kW) of input, but not less than 100 square inches (645 cm²).

(FIG. 7)
COMBUSTION AIR FROM OUTSIDE, SINGLE OPENING

If a single combustion air opening is provided to bring combustion air in directly from the outdoors, the opening must be sized based on a minimum free area of one square inch per 3000 Btu input (7 cm² per kW). This opening must be located within 12” (30 cm) of the top of the enclosure.

CONTAMINANTS

Combustion air drawn from an interior or exterior space must be free of any chemical fumes which could be corrosive to the water heater.

 Burning chemical fumes results in the formation of corrosive acids which attack the water heater, cause improper combustion and premature failure of the water heater and vent.

These fumes are often present in areas where refrigerants, salts, and solvents are used. Therefore, be aware of swimming pool equipment, water softening, and cooling system placement.

VENTING

General

These water heaters are classified as Category I appliances when tested to the latest ANSI Standard. This classification requires all conventionally vented combustion products to be vented using Category I listed vent pipe.

Additionally, it is recommended that this vent material be double wall construction or insulated in the field. A Category I appliance operates with a non-positive static vent pressure and with flue loss greater than 17 percent.

Vent installations for connection to gas vents or chimneys must be in accordance with Part 7, “Venting of Equipment,” of the latest edition of the National Fuel Gas Code, ANSI Z223.1, or applicable provisions of the local building codes.

CAUTION!

EXHAUST FANS:

Any fan or equipment which exhausts air from the equipment room may deplete the combustion air supply and/or cause a down draft in the venting system. If a fan is used to supply combustion air to the equipment room, it must be sized such to make sure that it does not cause drafts which could lead to nuisance operational problems with the water heater.
VENTING

General (cont’d)

The connection from the appliance vent to the stack must be as direct as possible and sized correctly. The horizontal breeching of a vent must have at least 1/4” rise per linear foot. The horizontal portions should also be supported for the design and weight of the material employed to maintain clearances, prevent physical damage and separation of joints.

The connection from the appliance vent to the stack or vent termination outside the building must be made with listed Category I double wall vent (or equivalent) connectors and sized according to vent sizing tables (FAN column) in the latest edition of the National Fuel Gas Code.

The Category I vent and accessories, such as firestop spacers, thimbles, caps, etc., must be installed in accordance with the vent manufacturer’s listing. The vent connector and firestop must provide correct spacing to combustible surfaces and seal to the vent connector on the upper and lower sides of each floor or ceiling through which the vent connector passes.

Any improper operation of the common venting system in an existing building should be corrected when new equipment is installed, so the installation conforms to the latest edition of the National Fuel Gas Code, ANSI Z223.1.

When resizing any portion of the common venting system, it should be resized to approach the minimum size as determined using the appropriate tables in the National Fuel Gas Code.

The weight of the venting system must not rest on the water heater. The venting system must be adequately supported in compliance with local codes and other applicable codes.

VENT TERMINATIONS

The vent terminal should be vertical and exhaust outside the building at least 2 feet (0.6m) above the highest point of the roof when within a 10 foot (3.05m) radius.

Additionally, vertical terminations must be a minimum of 3 feet (0.9m) above the roof line, and when less than 10 feet (3.05m) from a parapet wall must be a minimum of 2 feet (0.61m) higher than the parapet wall.

Vent caps should have a minimum clearance of 4 feet (1.2m) horizontally from, and in no case above or below [unless a 4 feet (1.2m) horizontal distance is maintained], electric meters, gas meters, regulators and relief equipment.

Maintain a distance of at least 3 feet (0.9m) above any forced air inlet within 10 feet (3.05m) and a distance of at least 4 feet (1.2m) below, 4 feet (1.2m) horizontally from, or 1 foot (30cm) above any door, window or gravity air inlet.

Do not terminate the vent in a window well, stairwell, alcove, courtyard or other recessed area. The vent cannot terminate below grade. The bottom of the vent terminal shall be located at least 12 inches (30cm) above grade and clear of snow, ice, leaves or other debris.

The distance of the vent terminal from adjacent public walkways, adjacent buildings, windows, and building openings must be consistent with the National Fuel Gas Code Z223.1 or in Canada, the latest edition of CGA Standard B149 Installation Code for Gas Burning Appliances and Equipment.
VENTING OPTIONS

Conventional Venting
A conventional venting system utilizes the natural buoyancy of the heated flue products to generate a negative draft. This draft forces flue products to rise vertically through a rooftop flue termination. The vent connection is made directly to the top of the unit and combustion air supplied from the mechanical room. Properly sizing vent material and the use of a barometric damper (when required) will lead to proper vent operation.

A barometric damper is required when draft exceeds 0.08 inches of negative water column. When installed and adjusted properly, a barometric damper will maintain draft between 0.02 and 0.08 inches of negative water column ensuring proper operation.

The minimum flue pipe diameters for all models, utilizing negative draft venting are as follows:

(TABLE C)

<table>
<thead>
<tr>
<th>MODEL NUMBER</th>
<th>FLUE SIZE</th>
<th>DIRECTAIRE INLET SIZE</th>
</tr>
</thead>
<tbody>
<tr>
<td>GWH0400</td>
<td>6”</td>
<td>6”</td>
</tr>
<tr>
<td>GWH0500</td>
<td>6”</td>
<td>6”</td>
</tr>
<tr>
<td>GWH0650</td>
<td>8”</td>
<td>8”</td>
</tr>
<tr>
<td>GWH0750</td>
<td>8”</td>
<td>8”</td>
</tr>
<tr>
<td>GWH1000</td>
<td>10”</td>
<td>10”</td>
</tr>
<tr>
<td>GWH1250</td>
<td>12”</td>
<td>12”</td>
</tr>
<tr>
<td>GWH1450</td>
<td>12”</td>
<td>12”</td>
</tr>
<tr>
<td>GWH1800</td>
<td>14”</td>
<td>14”</td>
</tr>
<tr>
<td>GWH2100</td>
<td>14”</td>
<td>12”</td>
</tr>
</tbody>
</table>

Size vent material using the “FAN” category of vent sizing tables in the latest edition of the National Fuel Gas Code. “FAN” applies to fan-assisted combustion appliances in Category I.

Multiple unit installations with combined venting also require barometric dampers to regulate draft at each unit. Again, the negative draft must be within the range of 0.02 to 0.08 inches of negative water column to ensure proper operation.

NOTE:
A vent system should never be sized based only on the vent connection diameter of the appliance. For proper vent design and sizing, please consult the National Fuel Gas Code (ANSI Z223.1).

NOTE:
Flue gases will form a white plume in winter. Plume could obstruct window view. Flue gas condensate can freeze on exterior surfaces or on the vent cap. Flue gas condensate can cause discoloration of exterior building surfaces. Adjacent brick or masonry surfaces should be protected with a rust resistant sheet metal plate.
VENTING OPTIONS

Conventional Venting (cont’d)

(FIG. 9)

MULTIPLE UNIT BAROMETRIC DAMPER INSTALLATION

For this type of installation, it is best to use a draft control for each water heater located on the riser between the vent outlet and the breeching - Location “A”. When this riser is too short to permit the installation of a draft control, locate a separate control for each water heater on the main breeching as illustrated in Location “B”. If, because of general crowding or other reasons, neither of these locations are possible, use a single large control in the breeching between the water heater nearest the chimney and the chimney, as shown in Location “C”.

All draft readings are made while unit is in stable operation (approx. 5 minutes running time).

Masonry Chimney

A masonry chimney must be properly sized for the installation of a high efficiency gas fired appliance. Exterior masonry chimneys, with one or more sides exposed to cold outdoor temperatures, are more likely to have venting problems. The temperature of the flue products from a high efficiency appliance may not be able to sufficiently heat the masonry structure of the chimney to generate proper draft. This will result in condensing of flue products, damage of the masonry flue/tile, insufficient draft and possible spillage of flue products into an occupied living space.

Carefully inspect all chimney systems during the project design phase. If there is any doubt about the sizing or condition of a masonry chimney, it is prudent to reline the chimney with a properly sized and approved chimney liner system. Metallic liner systems (Type “B” doublewall or flexible or rigid metallic liners) are recommended. Consult with local code officials to determine code requirements or the advisability of using or relining a masonry chimney.

(FIG. 10)

POWERED SIDEWALL VENTING
(Powered Vent Cap Shown)

Powered Sidewall Venting

This venting system uses a powered vent cap assembly which pulls the flue products out of the stack. The fan in the powered vent cap generates a negative draft at the unit. Combustion air is drawn from the mechanical room (See Combustion and Ventilation Air Requirements, page 6).
VENTING OPTIONS

Powered Sidewall Vent Kits

Genesis models GWH0400 thru GWH0750 utilize a powered vent cap which has a fan mounted inside the cap. The powered vent cap must be placed on an exterior wall. The powered sidewall vent cap and accessories are included in a venting kit, which must be furnished by A. O. Smith in accordance with CSA International requirements.

This venting kit includes the powered sidewall fan/cap, proving switch and all necessary relays to interlock with the water heater control system.

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Model Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>9910110000</td>
<td>GWH 400-500</td>
</tr>
<tr>
<td>9910110001</td>
<td>GWH 650-750</td>
</tr>
<tr>
<td>9910110002</td>
<td>GWH 1000</td>
</tr>
<tr>
<td>9910110003</td>
<td>GWH 1250-1450</td>
</tr>
<tr>
<td>9910110004</td>
<td>GWH 1800-2100</td>
</tr>
</tbody>
</table>

Genesis models GWH1000 thru GWH2100 utilize an inline fan, which is positioned on the inside of the sidewall and connected to a vent hood mounted on the sidewall exterior. The inline fan and accessories are included in a venting kit, which must be furnished by A. O. Smith in accordance with CSA International requirements.

This venting kit includes the inline fan, exterior vent hood, a tapered vent adapter, barometric damper, proving switch and all necessary relays to interlock with the water heater control system.

The connection from the vent to the sidewall fan/powered vent cap must be made with listed Type “B” double wall (or equivalent) vent and accessories. The installer supplies this vent pipe material.

For Genesis models GWH0400 thru GWH0750, maximum total equivalent length of the vent pipe cannot exceed 50 equivalent feet (15.24m). Genesis models GWH1000 thru GWH2100 allow a maximum total equivalent length of 100 feet (30.48m). Subtract 5 feet (1.52m) for each elbow in the vent.

Powered Sidewall Venting w/Ducted Air Horizontal

This vent system requires the installation of two vent pipes directly to the unit, one pipe for flue products and one for combustion air. Both vent pipes are installed horizontally with a sidewall termination point. The vent connection is made directly to the top of the unit and utilizes either the powered vent cap or inline fan as described in the side wall venting section (Pages 10-11).
VENTING OPTIONS

The combustion air supply system has specific vent material and installation requirements. The air inlet pipe connects directly to the water heater to supply combustion air. The combustion air inlet pipe will be a dedicated system with one air inlet pipe per water heater. The air inlet pipe must be connected to a combustion air inlet cap.

To prevent recirculation of flue products from an adjacent vent cap into the combustion air inlet, follow all applicable clearance requirements in the latest edition of the National Fuel Gas Code and the following instructions:

The combustion air inlet cap must be installed at least 1 foot (0.30m) above ground level and above normal snow levels.

The point of termination for the combustion air inlet cap must be at least 3 feet (0.91m) below the point of flue gas termination if it is located within 10 feet (3.05m) of the flue outlet.

The combustion air inlet cap must not be installed closer than 10 feet (3.05m) from an inside corner of an L-shaped structure.

Both the combustion air inlet cap and the powered vent cap/inline fan vent hood must be installed on the same wall and in the same pressure zone.

The Powered Sidewall Venting w/Ducted Air Horizontal system requires installation of a single wall pipe to supply combustion air from outdoors directly to the water heater. The use of double wall vent material is recommended in cold climates to prevent the condensation of airborne moisture.

For models Genesis models GWH0400 thru GWH0750, maximum total equivalent length of the vent pipe and combustion air inlet pipe cannot exceed 50 equivalent feet (15.24m). Genesis models GWH1000 thru GWH2100 allow a maximum total equivalent length of 100 feet (30.48m) for each pipe. Subtract 5 feet (1.52m) for each elbow in the vent.

Powered Sidewall Venting w/Ducted Air Horizontal Vent Kits

Genesis models GWH0400 thru GWH0750 vent kits includes the powered sidewall fan/cap, proving switch, air inlet cap and all necessary relays to interlock with the water heater control system. A. O. Smith must furnish this vent kit in accordance with CSA International requirements.

Genesis models GWH1000 thru GWH2100 vent kits includes the inline fan, exterior vent hood, a tapered vent adapter, barometric damper, proving switch, air inlet cap and all necessary relays to interlock with the water heater control system. A. O. Smith must furnish this vent kit in accordance with CSA International requirements.

The installer supplies all vent pipe material.

(TABLE E)

<table>
<thead>
<tr>
<th>MODEL NUMBER</th>
<th>FLUE SIZE</th>
<th>DIRECT AIR INLET SIZE</th>
<th>HORIZONTAL VENT KIT PART #</th>
</tr>
</thead>
<tbody>
<tr>
<td>GWH0400</td>
<td>6"</td>
<td>6"</td>
<td>9910112000</td>
</tr>
<tr>
<td>GWH0500</td>
<td>6"</td>
<td>6"</td>
<td>9910112000</td>
</tr>
<tr>
<td>GWH0650</td>
<td>8"</td>
<td>8"</td>
<td>9910112001</td>
</tr>
<tr>
<td>GWH0750</td>
<td>8"</td>
<td>8"</td>
<td>9910112001</td>
</tr>
<tr>
<td>GWH1000</td>
<td>10"</td>
<td>10"</td>
<td>9910112002</td>
</tr>
<tr>
<td>GWH1250</td>
<td>12"</td>
<td>12"</td>
<td>9910112003</td>
</tr>
<tr>
<td>GWH1450</td>
<td>12"</td>
<td>12"</td>
<td>9910112003</td>
</tr>
<tr>
<td>GWH1800</td>
<td>14"</td>
<td>12"</td>
<td>9910112004</td>
</tr>
<tr>
<td>GWH2100</td>
<td>14"</td>
<td>12"</td>
<td>9910112004</td>
</tr>
</tbody>
</table>
VENTING OPTIONS

Ducted Air Vertical
This vent system requires the installation of two pipes directly to the unit, one vertical pipe with a roof top termination for the flue products and one pipe for combustion air. The combustion air pipe may terminate horizontally with a sidewall air inlet or vertically with a roof top air inlet. Vent connection is made directly to the top of the unit.

No additional draft diverter or barometric damper is required on single unit installations with a dedicated stack and a negative draft maintained between 0.02 to 0.08 inches of negative water column. The flue may be combined with the vent from any other negative draft, Category I appliances.

Multiple unit installations common vented with other negative draft appliances require that each water heater must have a barometric damper. The common vent and connectors from multiple water heaters must be sized per the requirements of the venting tables for Type “B” double wall vents in the latest edition of the National Fuel Gas Code, ANSI Z223.1.

EXAMPLE OF COMBINED AIR INLET SIZING:
Two 8” air inlet pipes (50.3 in² area each) have a total area of 100.6 in² and will require a 12” (113.1 in² area) common air inlet pipe.

NOTE:
The use of double wall vent material for the combustion air inlet pipe is recommended in cold climates to prevent the accumulation of condensation on the pipe exterior.

CAUTION!
Water heaters which are shut down or will not operate may experience freezing due to convective air flow in the air inlet pipe connected to the unit. Proper freeze protection must be provided.
The combustion air inlet cap must not be installed closer than 10 feet (3.05m) from an inside corner of an L-shaped structure.

The vertical air inlet point for the combustion air inlet cap must be installed at least one foot (0.30m) above the rooftop and above normal snow levels. A. O. Smith is required to supply a vent kit for Ducted Air applications. Each kit includes either a sidewall or roof top combustion air inlet cap to supply air to a single water heater (See Table F).

Direct Vent

This vent system utilizes the internal blower of the unit to draw all combustion air from outside and vent the by-products of combustion to the outdoors. This vent system requires the installation of two vent pipes directly to the unit, one pipe for flue products and one pipe for combustion air. Both vent pipes can terminate horizontally at a sidewall or vertically at the rooftop. It is a requirement that both vent pipes terminate in the same pressure zone. The vent system has specific vent material and installation requirements.

The vent piping for flue products uses AL29-4C vent material and must be sealed “gas-tight” at all vent joints. The vent connection is made directly to the top of the unit. The maximum distance for the flue pipe is 50 equivalent feet (15.2m). Subtract 5 feet (1.52m) for each elbow in the flue pipe. The flue products vent pipe is a dedicated system with one flue pipe per unit.

The combustion air supply pipe connects directly to the unit to supply combustion air. The maximum distance for the air inlet pipe is 50 equivalent feet (15.2m). Subtract 5 feet (1.52m) for each elbow in the air inlet pipe.

TABLE F

VERTICAL VENTING/ROOF TOP DUCTED AIR INTAKE KIT

Includes - Rooftop Air Inlet Cap and Vertical DV Box Adapter (Mounts to Water Heater)

NOTE: Vertical Vent Termination is not included and is by the vent pipe manufacturer and must be UL approved to prevent downdrafts.

<table>
<thead>
<tr>
<th>MODEL NUMBER</th>
<th>VENT SIZE</th>
<th>AIR INLET SIZE*</th>
<th>ROOFTOP/VERTICAL AIR INLET KIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>GWH 400-500</td>
<td>6”</td>
<td>6”</td>
<td>9910111000</td>
</tr>
<tr>
<td>GWH 650-750</td>
<td>8”</td>
<td>8”</td>
<td>9910111001</td>
</tr>
<tr>
<td>GWH 1000</td>
<td>10”</td>
<td>10”</td>
<td>9910111002</td>
</tr>
<tr>
<td>GWH 1250-2100</td>
<td>12”</td>
<td>12”</td>
<td>9910111003</td>
</tr>
</tbody>
</table>

VERTICAL VENTING W/SIDEWALL DUCTED AIR INTAKE

Includes - Air Inlet Cap for Sidewall Termination and Horizontal DV Box Adapter (Mounts to Water Heater)

NOTE: Vertical Vent Termination is not included and is by the vent pipe manufacturer and must be UL approved to prevent downdrafts.

<table>
<thead>
<tr>
<th>MODEL NUMBER</th>
<th>VENT SIZE</th>
<th>AIR INLET SIZE*</th>
<th>SIDEWALL/HORIZONTAL AIR INLET KIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>GWH 400-500</td>
<td>6”</td>
<td>6”</td>
<td>9910113000</td>
</tr>
<tr>
<td>GWH 650-750</td>
<td>8”</td>
<td>8”</td>
<td>9910113001</td>
</tr>
<tr>
<td>GWH 1000</td>
<td>10”</td>
<td>10”</td>
<td>9910113002</td>
</tr>
<tr>
<td>GWH 1250-2100</td>
<td>12”</td>
<td>12”</td>
<td>9910113003</td>
</tr>
</tbody>
</table>
VENTING OPTIONS

Direct Vent (cont’d)

The combustion air inlet pipe is a dedicated system with one air inlet pipe per unit. The air inlet pipe must be connected to the Direct Vent (DV) box adapter. The air inlet pipe must be sealed.

Horizontal Direct Vent Kits

The vent kit includes a DV box adapter; sidewall air inlet cap and sidewall vent termination. A. O. Smith must furnish this vent kit in accordance with the CSA International requirements.

(TABLE G)

<table>
<thead>
<tr>
<th>MODEL NUMBER</th>
<th>PART NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>GWH 400-500</td>
<td>9910114000</td>
</tr>
<tr>
<td>GWH 650-750</td>
<td>9910114001</td>
</tr>
<tr>
<td>GWH 1000</td>
<td>9910114002</td>
</tr>
<tr>
<td>GWH 1250-1450</td>
<td>9910114003</td>
</tr>
<tr>
<td>GWH 1800-2100</td>
<td>9910114004</td>
</tr>
</tbody>
</table>

Vertical Direct Vent Termination

You must use the vent termination recommended by the vent manufacturer for vertical direct vent terminations.

The installer supplies all vent pipe material.

The combustion air inlet cap must be installed at least 1 foot (0.30m) above ground level and above normal snow levels.

The point of termination for the combustion air inlet cap must be at least 3 feet (0.91m) below the point of flue gas termination if it is located within 10 feet (3.05m) of the flue outlet.

The combustion air inlet cap must not be installed closer than 10 feet (3.05m) from an inside corner of an L-shaped structure.

Both the combustion air inlet cap and the flue gas vent termination must be installed in the same pressure zone.

Sidewall Vent

This vent system utilizes the internal blower of the unit to vent the by-products of combustion to the outdoors. This vent system requires the installation of one pipe for flue products. The vent pipes terminates horizontally at the sidewall. The vent system has specific vent material and installation requirements. The vent piping for flue products uses AL29-4C vent material and must be sealed “gastight” at all vent joints. The vent connection is made directly to the top of the unit. The maximum distance for the flue pipe is 50 equivalent feet (15.2m). Subtract 5 feet (1.52m) for each elbow in the flue pipe. The flue products vent pipe is a dedicated system with one flue pipe per unit.

Sidewall Vent Kits

The vent kit includes a sidewall vent termination assembly to provide pressure equalization. A. O. Smith must furnish this vent kit in accordance with CSA International requirements.
VENTING OPTIONS

(TABLE H)

SIDEWALL VENT
INCLUDES - SIDEWALL VENT TERMINATION

<table>
<thead>
<tr>
<th>MODEL NUMBER</th>
<th>PART NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>GWH 400-500</td>
<td>9910115000</td>
</tr>
<tr>
<td>GWH 650-750</td>
<td>9910115001</td>
</tr>
</tbody>
</table>

NOTE:
Some discoloration to building exterior or unit surfaces can be expected. Adjacent brick or masonry surfaces should be protected with a rust resistant sheet metal plate.

Combined Air Inlet Points

In most installations, the combustion air inlet pipe will be a dedicated system with one air inlet pipe per water heater.

Multiple air inlets may be combined to a single common connection if the common air inlet pipe has a cross sectional area equal to or larger than the total area of all air inlet pipes connected to the common air inlet pipe.

The air inlet point for multiple water heater air inlets must be provided with an exterior opening which has a free area equal to or greater than the total area of all air inlet pipes connected to the common air inlet. This exterior opening for combustion air must connect directly to the outdoors.

The total length of the combined air inlet pipe must not exceed a maximum of 50 (15.25m) equivalent feet. Subtract 5 feet (1.52m) for each elbow in the air inlet pipe. Deduct the restriction in area provided by any screens, grills or louvers installed in the common air inlet point. These are common

on the sidewall air inlet openings. Screens, grills or louvers installed in the common air inlet can reduce the free area of the opening from 25% to 75% based on the materials used.

OUTDOOR INSTALLATION

NOTE:
Outdoor models must have an optional vent cap and air inlet shield installed.

Units are self venting and can be used outdoors when installed with the optional Outdoor Cap. This cap mounts directly to the top of the water heater and covers the flue outlet and combustion air inlet openings on the jacket. No additional vent piping is required. Maintain a minimum clearance of 3” (76mm) to combustible surfaces and a minimum of 3” (76 mm) clearance to the air inlet.

An outdoor unit should not be located so that high winds can deflect off of adjacent walls, buildings or shrubbery causing recirculation. Recirculation of flue products may cause operational problems, bad combustion or damage to controls. The unit should be located at least 3 feet (0.91m) from any wall or vertical surface to prevent adverse wind conditions from affecting performance.

Multiple unit outdoor installations require 48” (1.22m) clearance between each vent cap. The outdoor cap must be located 4 feet (1.22m) below and 4 feet (1.22m) horizontally from any window, door, walkway or gravity air intake.
OUTDOOR INSTALLATION (cont’d)

The combustion air inlet of the outdoor cap must be located at least one foot (0.30m) above grade and above normal snow levels. The water heater must be at least 10 feet (3.05m) away from any forced air inlet and at least 3 feet (0.91m) outside any overhang.

Do not install in locations where rain from building runoff drains will spill onto the water heater.

A. O. Smith must furnish an outdoor vent kit in accordance with CSA international requirements. Each kit includes the flue outlet/combustion air inlet, assembly, gasket and pump cover.

Freeze Protection

A snow screen should be installed to prevent snow and ice accumulation around the appliance or its venting system.

If for any reason the unit is to be shut off:
(a) Shut off water supply.
(b) Drain unit completely.
(c) Drain pump and piping.

If freeze protection is not provided for the system, a low ambient temperature alarm or automatic drain system is recommended.

GAS SUPPLY

1. The gas pressure regulator supplied is for low pressure service. If upstream pressure exceeds 6 oz. (10.5" water column), an intermediate gas pressure regulator, of the lock up type, must be installed.

2. The gas line should be a separate line direct from meter, unless the existing gas line is of sufficient capacity. Verify pipe size with your gas supplier.

3. A trap (drip leg) should be provided in the inlet gas connection to the water heater.

4. A manual main gas shutoff valve is provided outside the jacket, upstream of the main gas valve.

5. In Canada, derated 10% from 2,000 - 4,500 ft., over 4,500 ft. derate must be in accordance with local authorities. Consult factory for installations at higher elevations.

<table>
<thead>
<tr>
<th>Nominal Iron Pipe Size, Inches</th>
<th>Length of Pipe in Straight Feet</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>10</td>
</tr>
<tr>
<td>3/4</td>
<td>369</td>
</tr>
<tr>
<td>1</td>
<td>697</td>
</tr>
<tr>
<td>1-1/4</td>
<td>1,400</td>
</tr>
<tr>
<td>1-1/2</td>
<td>2,150</td>
</tr>
<tr>
<td>2</td>
<td>4,100</td>
</tr>
<tr>
<td>2-1/2</td>
<td>6,460</td>
</tr>
<tr>
<td>3</td>
<td>11,200</td>
</tr>
<tr>
<td>3-1/2</td>
<td>23,500</td>
</tr>
</tbody>
</table>

Maximum capacity of pipe in thousands of BTU’s per hour for gas pressures of 14” Inches Water Column (0.5 PSIG) or less and a total system pressure drop of 0.05 Inch Water Column (Based on NAT GAS, 1025 BTU’s per Cubic Foot of Gas and 0.60 Specific Gravity).
GAS SUPPLY (cont’d)

High Altitude Applications

Atmospheric pressure decreases as the height above sea level increases. At any altitude above sea level, a cubic foot will contain less gas than a cubic foot at sea level. Thus, the heating value of a cubic foot of fuel gas will decrease as height above sea level increases.

Specific gravity of a gas with respect to sea level also decreases with altitude. These changes in heating value and specific gravity tend to offset each other.

However, as elevation above sea level is increased, there is less oxygen per cubic foot of air. Therefore, heat input rate should be reduced in an appliance above 2000 feet. Ratings should be reduced at the rate of 4 percent for each 1000 feet above sea level.

LOW WATER TEMPERATURE DELIVERY

The minimum inlet water temperature to the Genesis water heater is 140°F (60°C).

Reason why? If the inlet water temperature is less than 140°F (60°C), condensate will occur on the outside of the copper-finned tube and in-between the fins. The condensate will collect particles from the flue products. The moisture and particles build up over time and ultimately will clog the fins. This leads to improper combustion, sooting, elevated temperatures and premature failure of the heat exchanger. Since the water flowing into the water heater comes directly from the storage tank, A. O. Smith recommends maintaining a stored water temperature of 140°F (60°C) or greater. That works perfectly for kitchens, laundries and other processes that use high water temperatures.

A number of water heating applications may require delivered water temperature in a system below 140°F (60°C). Systems such as nursing homes and hospitals would be examples of this type of system. For water heating systems requiring outlet temperatures of less than 140°F (60°C) we strongly recommend you store your water temperature at 140°F (60°C), and then use a mixing valve to deliver a lower water temperature to the system.

All Genesis piping diagrams show a bypass between the inlet and the outlet of the water heater. If a mixing valve is not used and less than 140°F (60°C) is required for the system temperature. The bypass valve will need to be adjusted to maintain 140° (60°C) at the inlet of the water heater to prevent condensing and premature failure of the heat exchanger.

Properly sized systems maintaining a stored water temperature of 140° (60°C) or more may not require a bypass or the bypass valve may remain closed. See Appendix A for piping details.

WATER CONNECTIONS

Inlet and Outlet Water Connections

For ease of service, install unions on inlet and outlet of the water heater.

The connection on the unit marked “Inlet” should be used for return water from the storage tank. The connection on the header marked “Outlet” should be connected to the inlet of the storage tank. (See Appendix A for Water Heater Piping Diagrams).

(TABLE K)

<table>
<thead>
<tr>
<th>MODELS</th>
<th>NAT. GAS</th>
<th>LPG</th>
</tr>
</thead>
<tbody>
<tr>
<td>GWH0400 thru GWH0750</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum Allowable</td>
<td>10.5"</td>
<td>13"</td>
</tr>
<tr>
<td>Minimum Allowable</td>
<td>4.5"</td>
<td>8"</td>
</tr>
<tr>
<td>GWH1000 thru GWH2100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum Allowable</td>
<td>10.5"</td>
<td>13"</td>
</tr>
<tr>
<td>Minimum Allowable</td>
<td>4.5"</td>
<td>8"</td>
</tr>
</tbody>
</table>
WATER VELOCITY CONTROL

IMPORTANT

To ensure proper velocity through the heat exchanger, it is necessary to regulate the temperature rise across the heat exchanger from inlet to outlet. (This must be done on initial installation and periodically rechecked).

With the correct temperature rise across the heat exchanger (See TABLE L), you may be assured of the proper velocity in the tubes and long life and economical operation from the water heater.

(TABLE L)

REQUIRED TEMPERATURE RISE

<table>
<thead>
<tr>
<th>MODEL NUMBER</th>
<th>TEMPERATURE RISE °F</th>
</tr>
</thead>
<tbody>
<tr>
<td>GWH0400</td>
<td>12</td>
</tr>
<tr>
<td>GWH0500</td>
<td>15</td>
</tr>
<tr>
<td>GWH0650</td>
<td>20</td>
</tr>
<tr>
<td>GWH0750</td>
<td>23</td>
</tr>
<tr>
<td>GWH1000</td>
<td>19</td>
</tr>
<tr>
<td>GWH1250</td>
<td>24</td>
</tr>
<tr>
<td>GWH1450</td>
<td>27</td>
</tr>
<tr>
<td>GWH1800</td>
<td>34</td>
</tr>
<tr>
<td>GWH2100</td>
<td>39</td>
</tr>
</tbody>
</table>

PUMP OPERATION

1. The water heater MUST be connected with a properly sized and installed, intermittent operating, all bronze pump that circulates water between heater and storage tank.

2. The pump is sized to heater input and water hardness. Should water hardness exceed 25 grains/350 TDS, consult factory for pump sizing.

The pump chart (Table M) is based on the following fittings:

- 6-90° elbows
- 2 ball valves
- 2 unions
- 1 cold water supply tee

Due to pump capacity the following specifications cannot be exceeded when using the standard pump:

- Not more than 45 feet of straight pipe.

- For every elbow and tee in excess of those shown above, DEDUCT 5 FEET from maximum allowable straight pipe in heater-to-tank circulating loop.

WATER TREATMENT

(TABLE M)

REQUIRED PUMP PERFORMANCE FOR WATER HARDNESS OF 5 TO 25 GRAINS

<table>
<thead>
<tr>
<th>MODEL</th>
<th>GPM</th>
<th>FT. HD</th>
<th>AMP DRAW</th>
<th>HORSE POWER</th>
<th>VOLTAGE/PHASE</th>
</tr>
</thead>
<tbody>
<tr>
<td>GWH0400</td>
<td>55</td>
<td>10</td>
<td>5.8</td>
<td>1/4</td>
<td>120/1</td>
</tr>
<tr>
<td>GWH0750</td>
<td>90</td>
<td>15</td>
<td>7.4</td>
<td>1/2</td>
<td>120/1</td>
</tr>
</tbody>
</table>

In hard water areas, water treatment should be used to reduce introduction of minerals into the system. Minerals in the water can collect in the heat exchanger tubes causing noise and inefficient operation. Excessive build-up of materials in the heat exchanger can cause a non-warrantable failure.

Acceptable Water Quality Levels

- Maximum Water Hardness = 25 Grains
- Minimum Water Hardness = 5 Grains
- Maximum Total Dissolved Solids = 350 PPM
- Range of Acceptable pH = 7.2 to 7.8

Standard production A. O. Smith water heaters are designed to operate free of impurity build-up in the heat exchanger when properly installed and operated under the specified water quality conditions.

For installation in areas outside these parameters, please consult the factory.
WATER TREATMENT (cont’d)

Water Flow Switch

Due to the low water content (between 1 and 6 gallons) of the copper finned tube heat exchanger, a flow switch is factory installed as a low water cutoff device on models GWH0400 thru GWH2100. The flow switch is installed in the outlet piping from the water heater and wired in series with the ignition system safety controls.

In most localities, a flow switch is acceptable as a low water cutoff device on water heaters requiring forced circulation. It is prudent to verify acceptance with the local code official.

Relief Valve

This water heater is supplied with temperature and pressure relief valve(s) sized in accordance with ASME Boiler and Pressure Vessel Code, Section IV “Heating Boilers.”

ELECTRICAL REQUIREMENTS (North America)

The appliance is wired for 120 volts.

1. All wiring between the unit and field installed devices shall be made of type T wire [63°F (35°C) rise].

2. The pump must be wired to run continuously when unit is firing.

3. It is recommended that the water heater and pump be wired on separate circuits with properly sized breakers.

(TABLE O)

AMP DRAW DATA

<table>
<thead>
<tr>
<th>MODEL NUMBER</th>
<th>FAN(S)</th>
<th>CONTROLS</th>
<th>PUMP</th>
<th>TOTAL AMPS w/PUMP</th>
</tr>
</thead>
<tbody>
<tr>
<td>GWH0400</td>
<td>3.6</td>
<td>2.7</td>
<td>5.0</td>
<td>11.3</td>
</tr>
<tr>
<td>GWH0500</td>
<td>3.6</td>
<td>2.7</td>
<td>5.0</td>
<td>11.3</td>
</tr>
<tr>
<td>GWH0650</td>
<td>5.4</td>
<td>3.4</td>
<td>5.0</td>
<td>13.8</td>
</tr>
<tr>
<td>GWH0750</td>
<td>5.4</td>
<td>3.4</td>
<td>5.0</td>
<td>13.8</td>
</tr>
<tr>
<td>GWH1000</td>
<td>3.2</td>
<td>7.2</td>
<td>5.8</td>
<td>16.3</td>
</tr>
<tr>
<td>GWH1250</td>
<td>3.2</td>
<td>7.2</td>
<td>5.8</td>
<td>16.3</td>
</tr>
<tr>
<td>GWH1450</td>
<td>6.7</td>
<td>7.2</td>
<td>5.8</td>
<td>19.8</td>
</tr>
<tr>
<td>GWH1800</td>
<td>6.7</td>
<td>7.2</td>
<td>5.8</td>
<td>19.8</td>
</tr>
<tr>
<td>GWH2100</td>
<td>6.7</td>
<td>7.2</td>
<td>5.8</td>
<td>19.8</td>
</tr>
</tbody>
</table>

NOTE:
Incorrect piping of the cold water supply to the system will result in condensate formation on the heat exchanger and operational problems. Higher water temperatures reduce condensate formation. Refer to drawings in Appendix A.

(TABLE N)

COMMON WATER MANIFOLD SIZE FOR MULTIPLE WATER HEATER INSTALLATION

Pipe sizing chart provides minimum pipe size for common manifold piping to ensure adequate flow.

<table>
<thead>
<tr>
<th>NUMBER OF UNITS</th>
<th>COMMON MANIFOLD SIZE (MIN.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>GWH0400 thru GWH0750</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2"</td>
</tr>
<tr>
<td>2</td>
<td>3"</td>
</tr>
<tr>
<td>3</td>
<td>3-1/2"</td>
</tr>
<tr>
<td>4</td>
<td>4"</td>
</tr>
<tr>
<td>5</td>
<td>5"</td>
</tr>
<tr>
<td>6</td>
<td>5"</td>
</tr>
<tr>
<td>GWH1000 thru GWH2100</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2-1/2"</td>
</tr>
<tr>
<td>2</td>
<td>4"</td>
</tr>
<tr>
<td>3</td>
<td>4"</td>
</tr>
<tr>
<td>4</td>
<td>5"</td>
</tr>
<tr>
<td>5</td>
<td>6"</td>
</tr>
<tr>
<td>6</td>
<td>6"</td>
</tr>
</tbody>
</table>

NOTE:
When the unit is installed in Canada, it must conform to the CAE C22.1, Canadian Electrical Code, Part 1 and/or local Electrical Codes.
APPENDIX A
WATER HEATER PIPING DIAGRAMS

GENESIS WATER HEATER GWH (400-2100)
ONE WATER HEATER/VERTICAL STORAGE TANK RECOVERY SYSTEM (ONE TEMPERATURE)

NOTES:
1. Preferred piping method.
2. The temperature and pressure relief valve setting shall not exceed pressure rating of any component in the system.
3. Service valves are shown for servicing water heater. However, local codes shall govern their usage.
4. A. O. Smith piping method is based on 50 equivalent feet of piping. Water heater placement shall be as close as practical to the storage tank. Applications in excess of these recommendations shall require a licensed engineer for design assistance.
5. Pumps are mounted on rear header of each water heater (1000-2100).

WARNING: This drawing shows suggested piping configuration and other devices, check with local codes and ordinances for additional requirements.

LEGEND

<table>
<thead>
<tr>
<th>TEMPERATURE & PRESSURE RELIEF VALVE</th>
<th>PRESSURE RELIEF VALVE</th>
<th>CIRCULATING PUMP</th>
<th>TEMPERATURE CONTROL PROBE</th>
<th>DRAIN</th>
<th>FULL PORT BALL VALVE</th>
<th>CHECK VALVE</th>
<th>TEMPERATURE GAUGE</th>
<th>WATER FLOW SWITCH</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
WATER HEATER PIPING DIAGRAMS

GENESIS WATER HEATER GWH (400-2100)
ONE WATER HEATER/HORIZONTAL STORAGE TANK RECOVERY SYSTEM (ONE TEMPERATURE)

NOTES:
1. Preferred piping method.
2. The temperature and pressure relief valve setting shall not exceed pressure rating of any component in the system.
3. Service valves are shown for servicing water heater. However, local codes shall govern their usage.
4. A. O. Smith piping method is based on 50 equivalent feet of piping. Water heater placement shall be as close as practical to the storage tank. Applications in excess of these recommendations shall require a licensed engineer for design assistance.
5. Pumps are mounted on rear header of each water heater (1000-2100).

WARNING: This drawing shows suggested piping configuration and other devices, check with local codes and ordinances for additional requirements.

LEGEND

<table>
<thead>
<tr>
<th>TEMPERATURE & PRESSURE RELIEF VALVE</th>
<th>PRESSURE RELIEF VALVE</th>
<th>CIRCULATING PUMP</th>
<th>TEMPERATURE CONTROL PROBE</th>
<th>DRAIN</th>
<th>FULL PORT BALL VALVE</th>
<th>CHECK VALVE</th>
<th>TEMPERATURE GAUGE</th>
<th>WATER FLOW SWITCH</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
WATER HEATER PIPING DIAGRAMS

GENESIS WATER HEATERS GWH (400-2100)
TWO WATER HEATERS/VERTICAL STORAGE TANK RECOVERY SYSTEM (ONE TEMPERATURE)

NOTES:
1. Preferred piping method.
2. The temperature and pressure relief valve setting shall not exceed pressure rating of any component in the system.
3. Service valves are shown for servicing water heater. However, local codes shall govern their usage.
4. A. O. Smith piping method is based on 50 equivalent feet of piping. Water heater placement shall be as close as practical to the storage tank. Applications in excess of these recommendations shall require a licensed engineer for design assistance.
5. Temperature control probe (quad thermistor probe, PIN 9006905005) must be installed onto the tank, and connected to each water heater.

WARNING: This drawing shows suggested piping configuration and other devices, check with local codes and ordinances for additional requirements.

LEGEND

<table>
<thead>
<tr>
<th>TEMPERATURE & PRESSURE RELIEF VALVE</th>
<th>PRESSURE RELIEF VALVE</th>
<th>CIRCULATING PUMP</th>
<th>TEMPERATURE CONTROL PROBE</th>
<th>DRAIN</th>
<th>FULL PORT BALL VALVE</th>
<th>CHECK VALVE</th>
<th>TEMPERATURE GAUGE</th>
<th>WATER FLOW SWITCH</th>
</tr>
</thead>
</table>
WATER HEATER PIPING DIAGRAMS

GENESIS WATER HEATERS GWH (400-2100)
TWO WATER HEATERS/HORIZONTAL STORAGE TANK RECOVERY SYSTEM (ONE TEMPERATURE)

NOTES:
1. Preferred piping method.
2. The temperature and pressure relief valve setting shall not exceed pressure rating of any component in the system.
3. Service valves are shown for servicing water heater. However, local codes shall govern their usage.
4. A. O. Smith piping method is based on 50 equivalent feet of piping. Water heater placement shall be as close as practical to the storage tank. Applications in excess of these recommendations shall require a licensed engineer for design assistance.
5. Temperature control probe (quad thermistor probe, PIN 9006905005) must be installed onto the tank, and connected to each water heater.

WARNING: This drawing shows suggested piping configuration and other devices, check with local codes and ordinances for additional requirements.

LEGEND

- Temperature & Pressure Relief Valve
- Pressure Relief Valve
- Circulating Pump
- Temperature Control Probe
- Drain
- Full Port Ball Valve
- Check Valve
- Temperature Gauge
- Water Flow Switch

MODEL (GWH)	PIPING SIZE “A” (INCH)	MANIFOLD PIPING SIZE “B” (INCH)
400-750 | 2 | 3
1000-2100 | 2-1/2 | 4

FINISHED FLOOR
HOT WATER
TO FIXTURES
ALTERNATE
LOCATION
SYSTEM RETURN
COLD WATER SUPPLY
EXPANSION TANK
WATER HEATER PIPING DIAGRAMS

GENESIS WATER HEATERS GWH (400-2100)
TWO WATER HEATERS/TWO VERTICAL STORAGE TANK RECOVERY SYSTEMS
(ONE TEMPERATURE)

<table>
<thead>
<tr>
<th>MODEL (GWH)</th>
<th>PIPING SIZE “A” (INCH)</th>
<th>MANIFOLD PIPING SIZE “B” (INCH)</th>
</tr>
</thead>
<tbody>
<tr>
<td>400-750</td>
<td>2</td>
<td>2-1/2</td>
</tr>
<tr>
<td>1000-2100</td>
<td>2-1/2</td>
<td>4</td>
</tr>
</tbody>
</table>

NOTES:
1. Preferred piping method.
2. The temperature and pressure relief valve setting shall not exceed pressure rating of any component in the system.
3. Service valves are shown for servicing water heater. However, local codes shall govern their usage.
4. A. O. Smith piping method is based on 50 equivalent feet of piping. Water heater placement shall be as close as practical to the storage tank. Applications in excess of these recommendations shall require a licensed engineer for design assistance.
5. Temperature control probe (quad thermistor probe, PIN 9006905005) must be installed onto the tank, and connected to each water heater.

WARNING: This drawing shows suggested piping configuration and other devices, check with local codes and ordinances for additional requirements.

LEGEND

<table>
<thead>
<tr>
<th>TEMPERATURE & PRESSURE RELIEF VALVE</th>
<th>PRESSURE RELIEF VALVE</th>
<th>CIRCULATING PUMP</th>
<th>TEMPERATURE CONTROL PROBE</th>
<th>DRAIN</th>
<th>FULL PORT BALL VALVE</th>
<th>CHECK VALVE</th>
<th>TEMPERATURE GAUGE</th>
<th>WATER FLOW SWITCH</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
WATER HEATER PIPING DIAGRAMS

GENESIS WATER HEATERS GWH (400-2100)
TWO STACKED WATER HEATERS/VERTICAL STORAGE TANK RECOVERY SYSTEM
(ONE TEMPERATURE)

<table>
<thead>
<tr>
<th>MODEL (GWH)</th>
<th>PIPING SIZE "A" (INCH)</th>
<th>MANIFOLD PIPING SIZE "B" (INCH)</th>
</tr>
</thead>
<tbody>
<tr>
<td>400-750</td>
<td>2</td>
<td>2-1/2</td>
</tr>
<tr>
<td>1000-2100</td>
<td>2-1/2</td>
<td>3</td>
</tr>
</tbody>
</table>

NOTES:
1. Preferred piping method.
2. The temperature and pressure relief valve setting shall not exceed pressure rating of any component in the system.
3. Service valves are shown for servicing water heater. However, local codes shall govern their usage.
4. A. O. Smith piping method is based on 50 equivalent feet of piping. Water heater placement shall be as close as practical to the storage tank. Applications in excess of these recommendations shall require a licensed engineer for design assistance.
5. Temperature control probe (quad thermistor probe, P/N 9006905005) must be installed onto the tank, and connected to each water heater.

WARNING: This drawing shows suggested piping configuration and other devices, check with local codes and ordinances for additional requirements.

LEGEND
WATER HEATER PIPING DIAGRAMS

GENESIS WATER HEATERS GWH (400-2100)
TWO STACKED WATER HEATERS/HORIZONTAL STORAGE TANK RECOVERY SYSTEM
(ONE TEMPERATURE)

NOTES:
1. Preferred piping method.
2. The temperature and pressure relief valve setting shall not exceed pressure rating of any component in the system.
3. Service valves are shown for servicing water heater. However, local codes shall govern their usage.
4. A. O. Smith piping method is based on 50 equivalent feet of piping. Water heater placement shall be as close as practical to the storage tank. Applications in excess of these recommendations shall require a licensed engineer for design assistance.
5. Temperature control probe (quad thermistor probe, P/N 9006905005) must be installed onto the tank, and connected to each water heater.

WARNING: This drawing shows suggested piping configuration and other devices, check with local codes and ordinances for additional requirements.

LEGEND

<table>
<thead>
<tr>
<th>TEMPERATURE & PRESSURE RELIEF VALVE</th>
<th>PRESSURE RELIEF VALVE</th>
<th>CIRCULATING PUMP</th>
<th>TEMPERATURE CONTROL PROBE</th>
<th>DRAIN</th>
<th>FULL PORT BALL VALVE</th>
<th>CHECK VALVE</th>
<th>TEMPERATURE GAUGE</th>
<th>WATER FLOW SWITCH</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>